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Abstract Physical activity, including walking, has 
numerous health benefits in older adults, supported 
by a plethora of observational and interventional stud-
ies. Walking decreases the risk or severity of various 
health outcomes such as cardiovascular and cerebro-
vascular diseases, type 2 diabetes mellitus, cognitive 
impairment and dementia, while also improving men-
tal well-being, sleep, and longevity. Dose-response 
relationships for walking duration and intensity are 
established for adverse cardiovascular outcomes. 
Walking’s favorable effects on cardiovascular risk 
factors are attributed to its impact on circulatory, car-
diopulmonary, and immune function. Meeting current 

physical activity guidelines by walking briskly for 30 
min per day for 5 days can reduce the risk of several 
age-associated diseases. Additionally, low-intensity 
physical exercise, including walking, exerts anti-aging 
effects and helps prevent age-related diseases, making 
it a powerful tool for promoting healthy aging. This 
is exemplified by the lifestyles of individuals in Blue 
Zones, regions of the world with the highest concen-
tration of centenarians. Walking and other low-inten-
sity physical activities contribute significantly to the 
longevity of individuals in these regions, with walking 
being an integral part of their daily lives. Thus, incor-
porating walking into daily routines and encouraging 
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walking-based physical activity interventions can be 
an effective strategy for promoting healthy aging and 
improving health outcomes in all populations. The 
goal of this review is to provide an overview of the 
vast and consistent evidence supporting the health 
benefits of physical activity, with a specific focus on 
walking, and to discuss the impact of walking on vari-
ous health outcomes, including the prevention of age-
related diseases. Furthermore, this review will delve 
into the evidence on the impact of walking and low-
intensity physical activity on specific molecular and 
cellular mechanisms of aging, providing insights into 
the underlying biological mechanisms through which 
walking exerts its beneficial anti-aging effects.

Keywords Cardiovascular disease · 
Cerebrovascular disease · Blood pressure · Mortality · 
Healthy aging · Aging · Walking

Introduction

The Western world is experiencing a significant 
demographic shift as the population ages. Accord-
ing to the United Nations, the number of people aged 
60 years or older is expected to more than double by 
2050, reaching 2.1 billion [1]. With this increase in 
the aging population comes a greater focus on healthy 
aging, which involves maintaining physical and men-
tal health as people age [2–4].

One area of research that has gained attention in 
recent years is the study of determinants of healthy 
aging in the Blue Zones, regions of the world 
where people live longer, healthier lives than any-
where else [5–7]. Researchers have identified five 
Blue Zones around the world, including Okinawa 
in Japan, Sardinia in Italy, Nicoya in Costa Rica, 
Icaria in Greece, and the Seventh-day Advent-
ist community in Loma Linda, California. These 
regions have the highest concentration of centenar-
ians, people who have lived beyond 100 years, and 
the lifestyles of the people living in these regions 
have been studied to determine the factors con-
tributing to their longevity and healthy aging. This 
research has identified several factors that contrib-
ute to this phenomenon, including diet, social con-
nectedness, and physical activity [5–7].

One of the key lifestyle characteristics of Blue 
Zone populations is their high levels of physical 

activity, which includes regular walking in addition to 
other low-intensity physical activities. These popula-
tions engage in physical activity as part of their daily 
routine, such as walking to work or for daily errands, 
gardening, and performing other manual labor activi-
ties. Numerous studies have evaluated the evidence 
linking walking and physical activity in addition to 
other lifestyle factors in Blue Zones to healthy aging 
and longevity. In the Nicoya Peninsula of Costa Rica, 
physical activity is an integral part of daily life. The 
region’s terrain is hilly, and the residents often walk 
long distances to work or to visit friends and family. 
This continuous movement, coupled with a healthy 
diet rich in whole grains, fruits, and vegetables, con-
tributes to the long and healthy lives of the Nicoyans. 
Similarly, on the Greek island of Ikaria, where the 
terrain is rugged, residents engage in extensive walk-
ing and often participate in physical labor activities 
such as farming and goat herding. In Sardinia, walk-
ing and other physical activities also play a crucial 
role in healthy aging.

To promote healthy aging, health promotion pro-
grams should focus on the determinants of healthy 
aging identified in the Blue Zones. Regular physical 
activity, including walking, is a fundamental aspect 
of a healthy lifestyle and is associated with numerous 
health benefits, particularly in the context of healthy 
aging and longevity in the Blue Zones. Therefore, 
health promotion programs designed to promote 
healthy aging should prominently include recom-
mendations for walking in addition to other forms of 
regular physical activity, as a way to improve overall 
health and well-being.

Though the terms “physical activity” and “exer-
cise” are commonly used interchangeably, they 
are not necessarily the same. Physical activity is 
defined as any bodily movement produced by skel-
etal muscles that requires energy expenditure and 
includes exercise as well as usual occupational 
and/or domestic activity [8]. In contrast, exercise 
is intentional physical activity and can include 
aerobic training, high-intensity interval training, 
or resistance training [9]. The evidence supporting 
the health benefits of physical activity and exercise 
training is extensive and consistent. Regular physi-
cal activity is linked to a reduced risk or severity 
of adverse vascular outcomes, such as cardiovas-
cular disease (CVD) and type 2 diabetes (T2D), as 
well as non-vascular outcomes, including various 
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cancers, osteoarthritis, and infectious diseases 
[10–12]. Importantly, the beneficial health effects of 
physical activity are irrespective of age, sex, ethnic-
ity, or the presence of comorbidities [13]. Further-
more, regular physical activity and exercise training 
are also well documented to increase levels of car-
diorespiratory fitness (CRF) [14, 15], which is one 
of the strongest predictors of adverse cardiovascular 
outcomes [16–18]. Cardiorespiratory fitness is often 
characterized as maximal oxygen uptake  (VO2max) 
or peak  VO2  (VO2peak).

Promoting physical activity has been an impor-
tant strategy to specifically reduce the prevalence 
and incidence of common cardiometabolic condi-
tions all over the world. Components of physical 
activity include frequency, duration, and intensity, 
which together comprise the volume. To derive the 
maximal benefits of physical activity, an appropri-
ate intensity, frequency, and duration are required.

Physical activity can also be classified based on 
the level of intensity: light, moderate, and vigorous. 
Despite current physical activity guideline recom-
mendations, which state that adults should engage in 
at least 150–300 min of moderate-intensity physical 
activity or 75–150 min of vigorous-intensity physi-
cal activity per week or an equivalent combination of 
both types of physical activity per week [8, 9, 19], 
there is a research gap regarding the dose-response 
association between volume and intensity of physical 
activity and health outcomes [8, 9].

Walking is the most commonly reported physical 
activity and is often classified as light or brisk. Light 
walking is classified as low-intensity physical activ-
ity and brisk walking as moderate intensity physical 
activity. While the cardiovascular benefits of walking 
are widely acknowledged, there is uncertainty regard-
ing the ideal “dose” required to reap cardioprotective 
benefits, as well as the impact of walking on non-
vascular outcomes. Conflicting data also suggests that 
the intensity of physical activity may be associated 
with greater benefits than the quantity [20, 21].

The objective of this review is to provide a com-
prehensive summary of the extensive literature 
on the health benefits of walking in older adults, 
including the cardiovascular benefits and postulated 
biologic mechanisms underlying the associations 
between walking and health outcomes. Addition-
ally, this review aims to examine the implications 
for clinical practice and population health and to 

provide recommendations for future research direc-
tions. Specifically, this review will explore the role 
of walking in promoting healthy aging and improv-
ing health outcomes in older adults, with a focus 
on the specific recommendations that should be 
included in health promotion programs targeting 
physical activity, particularly walking. Furthermore, 
the review will investigate the anti-aging effects of 
walking, offering valuable insights into the potential 
contribution of walking to healthy aging.

Health benefits of walking

Methods

We conducted a thorough search for observational 
studies, including prospective cohort, nested case-
control, case-cohort or retrospective cohort stud-
ies, randomized controlled trials (RCTs), and non-
RCTs from MEDLINE and EMBASE up to May 
2023. Our search focused on the cardiovascular 
benefits of walking, with a particular emphasis on 
robust systematic reviews and meta-analyses of 
these study designs when available, according to 
the hierarchy of evidence [22]. Our search terms 
included a range of keywords related to “walking” 
and cardiovascular health, such as “cardiovascular 
disease,” “coronary heart disease,” “sudden cardiac 
death,” “heart failure,” “hypertension,” and “blood 
pressure,” as well as keywords related to other 
health outcomes, including “dementia,” “depres-
sion,” “anxiety,” “pulmonary disease,” “sleep,” 
“fracture,” “mortality,” “lipids,” “inflammation,” 
“oxidative stress,” “arterial stiffness,” “arterial 
compliance,” and “intima media thickness.” We 
restricted our review to studies conducted in human 
populations, reported in English, and in adults.

While “steps per day” is a commonly used metric 
for quantifying physical activity, it captures all types 
of activities involving “a movement made by lifting 
your foot and putting it down in a different place,” 
including walking and running [23]. As such, this 
review did not specifically focus on studies that used 
the measure of “steps per day.” However, we included 
studies that captured walking activities using acceler-
ometer-derived daily step count, such as 40 steps/min 
or faster defined as intentional walking or purpose-
ful movement or 100 steps/min defined as moderate 
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walking pace or brisk walk [24]. We excluded stud-
ies that examined walking in combination with other 
physical activity types such as cycling. Additionally, 
cross-sectional studies were not included as they do 
not address temporality. An important goal of this 
review was to provide a comprehensive overview of 
the existing evidence on the cardiovascular and other 
health benefits of walking and to explore the biologic 
mechanisms underlying these associations in promot-
ing healthy aging.

Cardiovascular outcomes

Cardiovascular risk factors

Several observational cohort and interventional stud-
ies have explored the impact of walking on cardio-
vascular risk factors. However, the results of these 
individual studies have been conflicting, leading to 
several systematic reviews and meta-analyses on the 
topic. One meta-analysis conducted by Kelley and 
colleagues [25] evaluated the effects of walking on 

resting systolic blood pressure (SBP) and diastolic 
blood pressure (DBP) by pooling data from 16 RCTs 
and non-RCTs. The study showed that walking exer-
cise programs led to mean reductions in SBP and 
DBP of 3 and 2 mmHg, respectively. Another meta-
analysis by Murphy and colleagues [26] pooled data 
from 24 RCTs to quantify the effect of walking inter-
ventions on selected risk factors, including aerobic 
fitness, blood pressure, and measures of body compo-
sition. The study showed that walking interventions 
increased aerobic fitness and decreased body weight, 
body mass index (BMI), percent body fat, and resting 
DBP in sedentary adults. Other meta-analyses have 
shown that walking significantly decreased glycated 
hemoglobin (A1c), BMI, and DBP, and increased 
 VO2max, while having no effect on high-density lipo-
protein cholesterol (HDL-C) or low-density lipopro-
tein cholesterol (LDL-C) levels [27–32]. Overall, 
these findings suggest that walking is associated with 
significant improvements in cardiovascular risk fac-
tors and also has the potential to be used as a thera-
peutic tool for individuals with T2D [33].

Fig. 1  Mechanisms 
mediating the anti-aging 
health benefits of light 
physical exercise and walk-
ing. This figure illustrates 
how light physical exercise 
and walking contribute to 
healthy organismal aging 
by potentially reversing 
or attenuating underlying 
cellular and molecular 
mechanisms of aging. By 
preventing or delaying age-
related functional decline 
and the onset of age-related 
diseases in multiple organ 
systems, exercise and 
walking promote overall 
anti-aging effects
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Regular exercise, including walking, has a profound 
impact on endothelial function, which plays a critical 
role in cardiovascular health [34–38]. Endothelial cells 
line the inner surface of blood vessels and are respon-
sible for regulating vascular tone and thereby blood 
pressure, maintaining vascular integrity, regulating 
hemostasis, and platelet aggregation. The preserva-
tion of endothelial health is paramount in preventing 
the development of atherosclerosis and pathological 
vascular remodeling in large vessels. Equally impor-
tant is the maintenance of microvascular endothelial 
health, as it plays a crucial role in preserving capillary 
architecture, regulating the tone of resistance arter-
ies to ensure adequate nutrient and oxygen delivery to 
tissues, and maintaining barrier function, such as the 
integrity of the blood-brain barrier. Additionally, micro-
vascular endothelial cells are involved in modulating the 
exchange of molecules, regulation of immune cell func-
tion, including leukocyte extravasation, and supporting 
the maintenance of stem cell niches. Aging is com-
monly associated with generalized endothelial dysfunc-
tion, which negatively impacts the proper functioning of 
both the large vessels and the microcirculation [39–42]. 
This age-related endothelial dysfunction compromises 
the overall health and disrupts the homeostasis of vari-
ous tissues and organ systems. Age-related endothelial 
dysfunction contributes to the development of mac-
rovascular (atherosclerotic diseases, including stroke, 
coronary artery disease, peripheral artery disease) and 
microvascular diseases (including microvascular pathol-
ogies affecting the heart brain, kidneys, skeletal muscle) 
[39–42]. Exercise promotes endothelial health in aging 
by promoting an anti-inflammatory, anti-atherogenic 
gene expression profile, stimulating the production 
and release of vasodilator nitric oxide (NO), and pro-
moting angiogenesis [43–46]. Exercise-induced shear 
stress plays a crucial role in regulating various aspects 
of endothelial function and phenotype. Increased blood 
flow and shear stress during exercise trigger the release 
of endothelial-derived NO, leading to vasodilation, low-
ering blood pressure, and improving tissue perfusion 
[45–48]. This vasodilatory effect not only enhances oxy-
gen and nutrient delivery, but also facilitates the removal 
of waste products. Shear stress can modulate the expres-
sion of pro-atherogenic and anti-atherogenic genes 
and activates various intracellular signaling pathways, 
including those involved in antioxidant defense and 
vascular remodeling. These mechanisms collectively 
contribute to the maintenance of a youthful endothelial 

phenotype and the prevention of endothelial dysfunc-
tion and atherosclerotic plaque formation. By promoting 
favorable shear stress and regulating gene expression, 
exercise serves as a powerful modulator of endothelial 
function. By enhancing endothelial function, exercise 
promotes optimal cardiovascular function and vascular 
health in older adults and reduces the risk of endothelial 
dysfunction-associated conditions such as hypertension, 
atherosclerosis, and CVD.

Hypertension

The blood pressure–lowering effect of walking has 
been widely investigated in observational cohort stud-
ies [27, 31, 32, 49, 50] and RCTs, as discussed in the 
previous section on cardiovascular risk factors. Pro-
spective cohort studies have also reported associa-
tions between walking and the risk of hypertension. 
For instance, a study of 6017 Japanese men (aged 
35–60 years) without a history of hypertension or dia-
betes at baseline found that walking for longer dura-
tions was associated with a reduced risk of hyperten-
sion [51]. Specifically, compared to a walk of 10 min 
or less, an 11- to 20-min walk and a walk of 21 min 
or more were associated with a 12% and 29% lower 
risk of hypertension, respectively [51]. Similarly, a 
study of 15,357 university graduates initially free of 
chronic disease or hypertension found that a normal, 
brisk, or very brisk walking pace was each associated 
with a reduced risk of hypertension compared to a 
slow walking pace, after adjusting for established risk 
factors [52]. Moreover, a recent prospective analysis 
of 83,435 postmenopausal women (aged 50–79 years) 
without known hypertension, heart failure, coronary 
heart disease (CHD), or stroke found that walking at 
guideline-recommended volumes (>7.5 MET hours 
per week) and at faster speeds (≥2 miles per hour) 
was associated with a lower risk of hypertension [53].

Cardiovascular and cerebrovascular diseases

Several prospective epidemiological studies have been 
conducted to investigate the associations between walk-
ing and CVD outcomes [54]. In 2008, Hamer and 
Chida conducted the first systematic review and meta-
analysis of these studies [55], which included 18 pro-
spective studies comprising 459,833 participants free 
from CVD at baseline with 19,249 CVD cases at fol-
low-up. The authors found that comparing the highest 
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versus the lowest walking category was associated with 
a 31% reduced risk of CVD. Another meta-analysis by 
Zheng and colleagues in 2009 found that an increase 
of approximately 30 minutes of normal walking a day 
for 5 days a week was associated with a 19% reduction 
in CHD risk, with no evidence of a difference between 
men and women [56]. Other studies have reported dose-
response reductions in CVD risk with higher walking 
duration, distance, energy expenditure, and pace [57, 
58]. Additionally, walking at a brisk/fast pace was asso-
ciated with a 24% and 21% reduced risk of CVD mor-
tality, respectively, compared with walking at a slow 
pace [59]. Other studies reached similar conclusions. 
In analysis of the UK Biobank comprising 318,185 
participants, Celis-Morales and colleagues [54] investi-
gated the associations between usual walking pace and 
a range of health outcomes. In fully adjusted models, 
compared to slow pace walkers, men and women with a 
brisk walking pace had a 38% and 53% reduced risk of 
CVD mortality, respectively [54]. In another analysis of 
the UK Biobank cohort, slow walking pace compared 
with average walking pace was associated with a higher 
risk of stroke (hazard ratio, HR = 1.45) in the overall 
study population of 363,137 participants [60]. In a sub-
group analysis, the association was only existent among 
participants aged ≥65 years (HR = 1.42) [60]. In pooled 
analysis of 8 prospective cohort studies that examined 
the association between walking pace and stroke risk, 
individuals in the fastest walking-pace category had a 
44% lower risk of stroke compared to individuals in the 
slowest walking-pace category [61]. In dose-response 
analysis, every 1 km/h increment in baseline walking 
pace was associated with a 13% decreased risk of stroke 
[61]. In addition to walking pace (intensity), a number 
of individual studies have reported incremental dose-
response reductions in the risk of adverse cardiovascu-
lar outcomes in relation to increasing walking duration 
or distance and higher energy expenditure from walk-
ing [62–68]. In a recent analysis of the UK Biobank in 
which data on accelerometer-measured daily step count 
was available for 78,500 individuals, more daily steps 
(including purposeful or intentional walking steps) 
were associated with lower CVD incidence and mortal-
ity [69].

Cognitive function and dementia

The evidence regarding the relationship between 
physical activity and adverse cognitive outcomes 

such as cognitive impairment, Alzheimer’s disease 
(AD), and dementia has been inconsistent. While 
some studies have reported decreased dementia risk 
with higher physical activity [70, 71], others have 
found no association [72–74]. Similar inconsistencies 
have been found in individual studies of walking with 
cognitive outcomes. However, a meta-analysis of 17 
prospective cohort studies evaluating the association 
of walking pace with the risk of cognitive decline and 
dementia among elderly populations found that com-
paring the lowest to the highest category of walking 
pace was associated with an increased risk of cogni-
tive decline (relative risk, RR = 1.89) and dementia 
(RR = 1.66) [75]. Moreover, with every 1 dm/s (360 
m/h) decrement in walking pace, the risk of demen-
tia increased by 13% [75]. Another study assessed 
the dose-response association of daily step count and 
intensity with the incidence of all-cause dementia 
among adults [76]. It found that approximately 9800 
steps per day may be optimal to reduce the risk of 
dementia; a minimum dose of 3800 steps per day was 
associated with a 25% lower risk of dementia [76]. In 
addition, steps performed at higher intensity resulted 
in stronger associations [76]. While the evidence is 
not yet definitive, these studies suggest that walking 
and higher levels of physical activity may be benefi-
cial for cognitive health. There is increasing evidence 
that microvascular pathologies play a critical role in 
the pathogenesis of cognitive impairment and demen-
tia [77–84]. While the exact mechanisms are still 
being studied, it is becoming increasingly clear that 
walking and other forms of physical activity have a 
more profound effect on endothelial cell physiology 
and the genesis of vascular cognitive impairment 
(VCI) than on amyloid pathologies within the brain 
parenchyma. As such, it may be important for future 
studies to separately investigate the effects of walk-
ing on VCI and AD, in order to better understand 
the complex relationships between physical activity, 
brain health, and cognitive outcomes.

Type 2 diabetes mellitus

In a 2007 meta-analysis of 10 prospective studies 
that investigated the association between moderate-
intensity physical activity and the risk of T2D, the 
pooled analysis of 5 studies specifically evaluat-
ing the role of walking showed that regular walking 
(approximately ≥2.5 h/week) was associated with a 
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30% reduced risk of T2D compared with almost no 
walking [85]. In 2020, Ballin and colleagues [86] 
examined the association between daily step count 
(assessed with accelerometer with activity threshold 
set to >100 counts/min) and incident diabetes in 3055 
community-dwelling 70 year olds. Participants who 
took ≥ 4500 steps/day had a 59% lower risk of dia-
betes compared to those taking fewer steps. Further-
more, the dose-response analysis indicated a steep 
decline in the risk of diabetes until around 6000 steps/
day, with the risk decreasing at a slower rate until it 
levelled off at around 8000 steps/day [86]. In a recent 
analysis of 162,155 UK Biobank participants, both 
average and slow walking pace were each associated 
with a higher risk of incident T2D compared to brisk 
walking in both men and women, independent of 
major confounding factors [87]. Furthermore, recent 
results from the population-based prospective cohort 
Hispanic Community Health Study/Study of Lati-
nos, which included 6634 adults, demonstrated that 
accumulating more daily steps (including purposeful 
walking steps or brisk walk) and greater step intensity 
were associated with a reduced risk of diabetes [88].

All-cause mortality

In the study by Hamer and Chida [55], which inves-
tigated the relationship between walking and the risk 
of all-cause mortality, the highest versus the lowest 
walking category was associated with a 32% reduced 
risk of mortality. Similar to the findings for CVD, the 
results were not significantly different for men and 
women, with walking pace being a stronger inde-
pendent predictor compared to walking volume [55]. 
High walking volume or intensity was associated with 
the strongest risk reduction [55]. In a pooled analysis 
of 14 prospective cohort studies, Kelly and colleagues 
[50] showed an incremental reduction in the risk of 
all-cause mortality with high walking volume, with 
a standardized dose of 11.25 MET-hours per week 
being associated with an 11% risk reduction.

Stamatakis and colleagues found that walking at an 
average or brisk/fast pace was associated with a 20% 
and 24% reduced risk of all-cause mortality, respec-
tively, compared to walking at a slow pace [59]. In 
an analysis of the UK Biobank cohort, Celis-Morales 
and colleagues found that men and women with a 
brisk walking pace had a 21% and 27% reduced risk 
of all-cause mortality, respectively, compared to slow 

pace walkers [54]. Furthermore, more daily steps, 
including purposeful or intentional walking steps, up 
to approximately 10,000 steps, were associated with 
a lower risk of all-cause mortality in the UK Biobank 
analysis [69]. A study of 17,466 women (aged 
62–101 years) found that approximately 4400 steps 
per day was associated with a 41% reduction in mor-
tality rate compared with approximately 2700 steps 
per day, with a steady decline in mortality rates up 
to approximately 7500 steps per day, beyond which 
mortality rates levelled [89]. However, the time spent 
at a stepping rate of 40 steps/min or faster (intentional 
walking) was not clearly related to mortality risk.

In a recent meta-analysis of 15 international cohorts 
investigating the associations of daily step count and 
stepping intensity with all-cause mortality, it was dem-
onstrated that taking more steps per day was associated 
with progressively lower risk, up to a level that varied 
by age: 6000–8000 steps per day among adults aged 60 
years and older and 8000-10,000 steps per day among 
adults younger than 60 years [24]. However, the time 
spent walking at 40 steps/min or faster (intentional 
walking) and 100 steps/min or faster (defined as moder-
ate rate walking pace) was not found to be significantly 
associated with mortality [24].

Cancer

Stamatakis and colleagues [59] conducted a prospec-
tive pooled analysis of 11 population-based baseline 
surveys in England and Scotland in 2018. Their find-
ings reported no evidence of an association between 
walking pace and cancer mortality. Similarly, Celis-
Morales and colleagues [54] found no evidence of 
associations between walking pace and all-cause can-
cer, colorectal, and breast cancer in their analysis of 
the UK Biobank cohort; however, brisk walking was 
associated with a higher risk of prostate cancer. On 
the other hand, a recent analysis of the UK Biobank 
cohort, which measured accelerometer-based daily 
step count in 78,500 individuals, showed that accru-
ing more daily steps, including intentional walking 
steps, was associated with a lower risk of incident 
cancer and mortality due to cancer [69].

Respiratory pathologies

Celis-Morales and colleagues [54] found, in their 
analysis of the UK Biobank cohort, that brisk walking 
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was associated with reduced risk of respiratory dis-
ease in both men and women. Compared to slow pace 
walkers, men and women with a brisk walking pace 
had a 34% lower risk of respiratory disease. The cor-
responding risk reduction for chronic obstructive pul-
monary disease was even greater, at 65% and 72%, 
respectively. Furthermore, several prospective studies 
have reported that daily walking habits are associated 
with a reduced risk of pneumonia-related mortality 
in older people, with risk reductions ranging from 
10 to 42% [90–92]. Although two of the studies did 
not consider other forms of physical activity besides 
walking, one study demonstrated that daily walk-
ing alone was sufficient to reduce pneumonia-related 
mortality among older people who do not engage in 
other exercise habits regularly [90].

Bone health

Regular physical activity and exercise have been 
shown to have a positive impact on bone health, 
reducing the rate of bone loss, conserving bone tissue, 
increasing bone mineral density (BMD), and lower-
ing the risk of fractures [93, 94]. Weight-bearing 
endurance activities, muscle-strengthening physical 
activity, balance exercise, and resistance exercise are 
recommended in various guidelines to preserve bone 
health and reduce the risk of falls [94, 95]. However, 
there is uncertainty about the type and intensity of 
exercise that is beneficial for bone health. Although 
some systematic reviews and meta-analyses of RCTs 
have shown no significant effect of regular walking 
on BMD in perimenopausal and postmenopausal 
women [96, 97], others have demonstrated a posi-
tive effect on lumbar BMD but not on the femur or 
calcaneus [98]. One conclusion is that walking alone 
is not sufficient for those at risk of osteoporosis, and 
that other forms of exercise in addition to walking 
should be incorporated [98]. Nevertheless, a recent 
study suggested that a training program comprising 
fast walking and running exercises may increase or 
preserve BMD at the femoral neck in postmenopau-
sal women [99]. Pooled analysis of results from RCTs 
and quasi-RCTs of adults with chronic musculoskel-
etal pain showed that walking was associated with 
significant improvements in pain and function, but the 
longer-term effectiveness was uncertain [100]. Anal-
ysis of data from the Nurses’ Health Study and the 
Women’s Health Initiative prospective cohort study 

showed that walking was associated with a lower risk 
of hip fracture among postmenopausal women [101, 
102]. However, in a 5-year follow-up of an Australian 
population-based prospective study comprising post-
menopausal women and men aged 50 years or older, 
individuals who walked more than 3 h per week had 
an increased risk of fractures compared with those 
who reported no walking [103]. Overall, while walk-
ing may have some positive effects on bone health, it 
is important to consider incorporating other types of 
exercise to optimize bone health outcomes.

Sleep health

Regular physical activity has been shown to improve 
sleep quality and duration, but there is ongoing 
debate regarding the types of physical activity that are 
most effective in promoting better sleep [104, 105]. 
Wilbur et al. conducted a RCT to evaluate the impact 
of a 24-week, home-based, moderate-intensity walk-
ing intervention on various menopausal symptoms, 
including sleep, in 173 sedentary midlife women 
(aged 45–65 years) [106]. The study found that the 
frequency of adherence to walking significantly influ-
enced a positive change in sleep symptoms. In a lon-
gitudinal study of 103 midlife women (average age = 
53, range 40–60 years), increased activity levels dur-
ing the day were associated with an increase in total 
sleep time at night, with a stronger protective effect 
observed in overweight and obese women [106]. A 
recent 4-week RCT that assessed the effect of walk-
ing on sleep quality and duration in 59 healthy par-
ticipants (average age of 49 years) observed a positive 
relationship between daily active minutes and sleep 
quality, but not duration. Women who were more 
active and took more steps also reported better sleep 
quality compared to those who were less active [107].

Mental health conditions and quality of life

Physical activity and exercise have well-documented 
mental health benefits, even at levels below public 
health recommendations [108–111]. Studies have 
shown that physical activity is associated with a 
reduced risk of depression, with evidence suggesting 
a causal relationship [112]. In addition to the physi-
cal health benefits of walking, it has the potential to 
enhance emotional and psychological well-being, 
improve mood, and reduce the risk of various mental 
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conditions. Recent research has demonstrated the 
effectiveness of walking in reducing the symptoms 
of depression compared to non-walking interventions 
such as social support, stretching, and cognitive inter-
ventions [113]. Sessions ranged from 20 to 50 min 
per day to 5 times per week over 6.2 days to 6 months 
[113]. In another study, brisk walking was found to 
improve mood state [114], and walking has also been 
shown to boost creative inspiration. People’s creative 
output increased by an average of 60% while walk-
ing compared to sitting, according to experiments 
by Oppezzo and Schwartz [115]. Furthermore, walk-
ing has been positively linked to various aspects of 
health-related quality of life [116, 117].

Cellular and molecular pathways contributing 
to the anti‑aging health benefits of low‑intensity 
exercise and walking

Endocrine and metabolic pathways

The health benefits of physical activity or exercise 
training are well documented and observed across 
multiple organ systems including the cardiovascular 
system. These benefits are achieved through several 
mechanisms, such as improvements in intermediate 
or cardiovascular risk factors including BMI, blood 
pressure, endothelial function, blood glucose, and 
insulin resistance [27, 29] (Fig. 1). This is consistent 
with some studies of the associations between walk-
ing and adverse cardiovascular outcomes which have 
reported incomplete attenuations of the associations 
following adjustment for cardiovascular risk factors 
such as BMI [58]. However, evidence suggests that 
these pathways may not completely account for the 
effects of physical activity or exercise on cardiometa-
bolic health. Emerging evidence indicates that exer-
cise triggers the release of exerkines, which exert their 
effects through endocrine, paracrine, and/or autocrine 
pathways [118]. Exerkines have potential roles in 
improving cardiovascular, metabolic, immune, and 
neurological health. For instance, exerkines produced 
by the cardiovascular system could mitigate systemic 
inflammation and ischemia, while those produced in 
adipose tissue enhance lipolysis, thermogenesis, and 
glucose metabolism. Extracellular vesicles have also 
been implicated in mediating the systemic benefits, 
including anti-aging effects, of exercise [119–128]. 

These vesicles encompass all membranous structures 
that cells secrete and were proposed as mediators of 
intercellular communication in both physiological 
and pathological conditions [129–131]. Although 
their exact function is not yet well understood, they 
may modulate immune responses, metabolism, angi-
ogenesis, tissue maintenance, and repair [119–128, 
132] through cell non-autonomous mechanisms. The 
observation that senescent cells exhibit an increased 
release of extracellular vesicles, coupled with an 
altered compositional profile, posits a compelling 
implication in their role as mediators of paracrine 
senescence during the aging process [133–138]. Dur-
ing exercise, muscle and other tissues increase the 
release of extracellular vesicles with a cargo that may 
contribute to the mediation of systemic effects of 
exercise [119–128, 139]. Physical activity is known 
to have favorable effects on lipid metabolism, reduc-
ing levels of serum triglycerides and LDL-C and 
increasing levels of HDL-C. It has been reported that 
3.5–7 h of moderate to vigorous physical activity per 
week or 30–60 min of exercise on most days could 
reduce triglycerides by up to 50%, reduce LDL-C by 
up to 5% and increase HDL-C by 5–10% [13]. How-
ever, the evidence collected so far suggests that walk-
ing may not have significant effects on lipid profiles 
[27, 29]. This observation may be related to the inten-
sity of physical activity, as walking may not provide 
enough intensity to improve lipid profiles, especially 
in those with hypercholesterolemia or hypertriglyc-
eridemia [13]. The cardiovascular benefits of walking 
may also be influenced by confounding or interaction 
with other physical activity types, given that those 
who walk may also engage in other types of physi-
cal activity that have a protective effect on cardiovas-
cular risk [140]. Furthermore, walking is an enjoy-
able physical activity that can reduce stress, enhance 
psychological well-being and trigger the release of 
endorphins, which promote relaxation and improve 
mood [141]. It is well known that ongoing stress is 
associated with an increased risk of physical ailments 
including CVD and cancer, as well as mental health 
issues and adverse effects on overall health [142].

Physical activity plays a crucial role in influencing 
hormonal changes associated with aging, particularly 
in relation to insulin-like growth factor 1 (IGF-1) 
[143–146]. Epidemiological studies have consistently 
shown that circulating IGF-1 levels decline with age, 
which has been linked to the development of various 
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age-related conditions and diseases [147–150]. Inter-
estingly, centenarians have been found to have higher 
levels of IGF-1 compared to younger individuals 
[151]. Animal studies further support the pleiotropic 
anti-aging effects of IGF-1 [151, 152], including its 
atheroprotective, microvascular protective, and neu-
roprotective properties [79, 151, 153–160]. While 
genetic IGF-1 deficiency in humans is associated 
with shortened lifespan [161], certain genetically 
modified mouse models with IGF-1 deficiency show 
lifespan extension due to its anti-cancer growth action 
[162]. In preclinical models of aging, exercise has 
been shown to enhance skeletal muscle mass, exer-
cise capacity, metabolism indicators, and protein syn-
thesis, while reducing oxidative stress and apoptosis 
through the activation of the IGF-1 pathway [146]. 
However, studies on the effect of physical activity on 
IGF-1 levels in humans have yielded mixed results 
[143, 145, 163–166], with some suggesting that phys-
ical activity increases circulating IGF-1 levels [143, 
167]. The specific effects of walking on IGF-1 levels 
are less well understood and require further investiga-
tion [167, 168].

Age-related changes in sex hormone levels, such as 
testosterone and estrogen, are also well-documented 
phenomena of aging [169]. In men, declining levels 
of androgens, including testosterone, are associated 
with decreased muscle mass and strength, reduced 
bone mineralization, and increased central body fat 
[169]. Resistance training has been shown to increase 
testosterone levels [169]. As for walking, studies sug-
gest that individuals who take more than 4000 steps 
daily are less likely to have low testosterone levels, 
with an approximate increase of 7 ng/dL for every 
additional 1000 steps taken [170].

In women, estrogen levels decrease with age, 
which can impact longevity [169]. Estrogen plays 
a role in antioxidant activity, membrane stabiliza-
tion, and maintenance of bone mass [169]. Physical 
activity, including exercise programs, can help coun-
terbalance the decline in estrogen levels observed in 
postmenopausal women [169]. A 12-week exercise 
program, for example, has been shown to improve 
estradiol levels in postmenopausal women, with 
anaerobic exercises potentially having a more sub-
stantial effect compared to aerobic exercises [171]. 
Further research is needed to investigate the specific 
effects of walking interventions on estrogen levels in 
older females.

Understanding the intricate relationship between 
physical activity, hormonal changes, and the aging 
process is essential for developing comprehensive 
interventions to promote healthy aging and prevent 
age-related diseases. Further studies are warranted 
to explore the mechanisms and differential effects 
of walking interventions on hormone levels in older 
adults, with the ultimate goal of optimizing health 
outcomes and improving overall well-being.

While the health benefits of physical activity and 
nutrition are often studied separately, it is widely rec-
ognized that they are both vital aspects of a healthy 
lifestyle and contribute to healthy aging. Integrat-
ing nutrition and physical activity can yield more 
substantial positive health outcomes compared to 
approaches that solely focus on one or the other [172]. 
This comprehensive approach recognizes that optimal 
nutrition plays a crucial role in facilitating exercise 
performance and enhancing the beneficial effects of 
exercise. Incorporating natural food components with 
physiological actions, often referred to as “functional 
foods” [173, 174], can provide essential nutrients, 
improve performance and endurance, enhance mus-
cle strength, prevent injury and fatigue, and main-
tain immunity [175]. Moreover, nutrition therapy has 
emerged as a promising approach to increasing car-
diorespiratory fitness levels among diverse popula-
tions with exercise limitations, including those with 
chronic obstructive pulmonary disease, heart failure, 
obesity, sarcopenia, and frailty [14, 176–181]. By 
combining physical activity and optimal nutrition, 
individuals can optimize their overall health, pro-
mote healthy aging, and enhance their quality of life 
[182–191].

Effects on cellular and molecular mechanisms of 
aging

In this section, we explore the effects of low inten-
sity exercise on the fundamental molecular and cel-
lular mechanisms of aging, drawing primarily from 
experimental studies conducted on rodent models 
with different exercise paradigms in laboratory set-
tings. Wherever available, we will also discuss rel-
evant human data on the effects of exercise on these 
mechanisms. These studies have shed light on poten-
tial mechanisms through which exercise may exert its 
beneficial effects on aging. However, it is important to 
acknowledge that while we review these mechanisms 
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for the benefit of the reader, the direct extrapolation 
of findings from rodent studies to the effects of walk-
ing in humans is still speculative and warrants further 
investigation. Additionally, extrapolating results on 
the effects of different exercise regimens from human 
studies to the specific context of walking can also 
be challenging, given the unique characteristics and 
physiological responses associated with this specific 
mode of physical activity.

The current view is that, in general, exercise exerts 
multifaceted effects on synergistic cellular and molec-
ular mechanisms that underlie the aging process, tar-
geting various hallmarks of aging.

First, exercise may promote DNA repair and main-
tenance, enhancing genome stability and reducing the 
accumulation of DNA damage over time [192–195]. 
It activates DNA repair enzymes and increases the 
expression of proteins involved in DNA damage 
response pathways [196, 197]. Additionally, exercise 
can modulate telomere length and telomerase activ-
ity, which are associated with cellular senescence and 
aging [198–205].

Second, exercise mitigates oxidative stress [36, 
45, 206], a key contributor to cellular aging and the 
pathogenesis of age-related diseases in various organ 
systems [42, 82, 84, 207–221]. It enhances antioxi-
dant defenses, increases the expression of endogenous 
antioxidant enzymes, improves mitochondrial func-
tion, and reduces the production of reactive oxygen 
species (ROS) [222–224].

Third, exercise influences cellular senescence and 
inflammation, two interconnected hallmarks of aging. 
Cellular senescence refers to a state of irreversible 
cell cycle arrest that occurs in response to various 
stressors, such as DNA damage. Senescent cells accu-
mulate with age and are implicated in tissue dysfunc-
tion and the pathogenesis of age-related diseases [80, 
225–232]. Cellular senescence is characterized by the 
secretion of a complex mixture of pro-inflammatory 
molecules, known as the senescence-associated secre-
tory phenotype (SASP) [233]. The SASP includes 
a variety of inflammatory cytokines, chemokines, 
growth factors, and enzymes involved in remod-
eling of the extracellular matrix (i.e., matrix metal-
loproteinases), which can promote local and systemic 
inflammation. This chronic low-grade sterile inflam-
mation, often referred to as “inflammaging,” con-
tributes to the development of a wide range of age-
related diseases and tissue dysfunction. Exercise has 

been shown to attenuate the accumulation of senes-
cent cells [234, 235] and reduce the production of 
pro-inflammatory cytokines [236–239], thereby pro-
moting an anti-inflammatory environment and damp-
ening inflammaging.

Fourth, exercise modulates metabolism and energy 
homeostasis, regulating key nutrient sensing path-
ways such as insulin/IGF-1 signaling, the mammalian 
target of rapamycin (mTOR) pathway [240–244], and 
activating sirtuins and AMP-activated protein kinase 
(AMPK) [245–249]. These pathways play a crucial 
role in the regulation of aging by sensing the availa-
bility of nutrients and energy levels in cells and mod-
ulating various cellular processes including metabo-
lism, mitochondrial function, protein synthesis, and 
stress responses and cellular resilience.

Fifth, exercise also exerts beneficial effects on 
the mitochondria. Members of the sirtuin family of 
 NAD+-dependent deacylases (SIRT-1, SIRT-3) play 
a critical role in regulation of mitochondrial bio-
genesis and bioenergetics, cellular resilience, and 
organismal lifespan [83, 219, 250–263]. Aging is 
associated with a decline in mitochondrial function, 
partially driven by mitochondrial DNA damage, dys-
regulation of mitochondrial gene expression, decline 
in SIRT-1 and SIRT-3 activity, and uncoupling of the 
electron transport chain [264–270]. This reduction 
in mitochondrial function can promote various age-
related conditions, including sarcopenia and cardio-
vascular and cerebrovascular diseases [84, 207, 212, 
264, 269, 271–273], due to increased mitochondria-
derived production of reactive oxygen species (ROS), 
impaired cellular energetics, decreased cellular aden-
osine triphosphate levels, increased apoptosis, and 
cellular injury. Importantly, exercise has been shown 
to counteract these processes and improve mitochon-
drial function [196, 222, 223, 274–276]. Protective 
mechanisms induced by physical activity include the 
activation of the PGC-1α-dependent pathway, which 
promotes mitochondrial biogenesis, the reduction 
of mitochondrial ROS production and activation of 
autophagy, and the mitochondrial unfolded protein 
response [222, 223, 274–283]. Aerobic training ses-
sions have been shown to upregulate sirtuins in skel-
etal muscle and other tissues, which in turn activates 
biogenesis and mitochondrial oxidative capacity [248, 
262, 284–290]. Additionally, studies have demon-
strated that resistance training can increase the activ-
ity of complex IV enzymes, which is associated with 
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improved oxidative capacity. These findings have 
been observed in both animal and human studies, 
indicating the positive impact of exercise on mito-
chondrial function. While in-depth studies investi-
gating the effects of walking on mitochondrial func-
tion are limited, initial studies have shown promising 
effects of walking interventions on mitochondrial 
function [291]. Future studies should determine 
how regular walking affect mitochondrial biogenesis 
and mitochondrial function in older adults in differ-
ent tissues. Importantly, the quality of mitochondrial 
function can also influence an individual’s ability to 
engage in physical activity. Thus, there is a reciprocal 
relationship between physical activity and mitochon-
drial function, reinforcing the importance of exercise 
as a means to promote healthy aging and maintain 
optimal cellular metabolism.

Sixth, exercise affects cellular and tissue regen-
eration, promoting the maintenance and functional-
ity of stem cells [292, 293]. It stimulates the release 
of growth factors and cytokines that support tissue 
repair and regeneration [145, 294–298].

Finally, exercise exerts a significant influence on 
the epigenetic regulation of aging processes, encom-
passing DNA methylation [299, 300], sirtuin acti-
vation, and histone acetylation [285, 287], thereby 
modulating gene expression patterns associated with 
aging and contributing to the maintenance of a youth-
ful cellular phenotype. Various aging clocks have 
been developed to estimate biological age by meas-
uring specific molecular and cellular biomarkers, 
including DNA methylation patterns and gene expres-
sion profiles. Exercise has emerged as a promising 
modality to positively influence biological age [300]. 
Studies have demonstrated that regular physical activ-
ity, including both aerobic and resistance exercise, is 
associated with a slower rate of biological aging as 
measured by different aging clocks. However, further 
research is needed to fully understand the extent to 
which exercise in general and walking interventions 
in particular can influence and reverse biological 
aging and to explore the potential of exercise inter-
ventions as a means to target and modify the trajec-
tory of biological age.

By targeting these evolutionarily conserved 
mechanisms of aging, exercise exerts a holistic and 
profound impact on the aging process, promoting 
enhanced cellular function, tissue health, and over-
all longevity. Exercise paradigms serve as powerful 

interventions capable of delaying cellular aging pro-
cesses, postponing the onset of age-related diseases 
and fostering healthy aging, as supported by a wealth 
of evidence from both preclinical and clinical studies. 
Future research is warranted to elucidate the extent 
to which uncomplicated, self-directed walking inter-
ventions can confer comparable benefits [237, 238, 
301–303], as this knowledge holds great potential 
for promoting accessible and effective strategies for 
healthy aging.

Adverse effects of walking

Despite the substantial health benefits associated with 
regular physical activity, vigorous-intensity physical 
activity may act as a trigger for cardiovascular out-
comes such as ventricular arrhythmias, sudden car-
diac arrest, sudden cardiac death, and acute coronary 
syndromes such as myocardial ischemia and myocar-
dial infarction, transient ischemic attacks (TIAs), and 
cerebrovascular accidents strokes [13]. The risk of 
these outcomes is greatest in athletes and in people 
who do not habitually perform such intense physi-
cal activity. In athletes, it appears the intensities and 
volumes of these vigorous-intensity physical activ-
ity regimens far exceed those proposed by guideline 
recommendations [8, 9, 304]. Nevertheless, there 
is unequivocal evidence that the benefits of physi-
cal activity outweigh its potential adverse effects in 
healthy individuals. Walking is described as a low- 
to moderate-intensity physical activity; there is cur-
rently little evidence to suggest an increase in injuries 
or serious adverse events due to walking apart from a 
few isolated reports of calf injuries and falls, which 
occurred in people with conditions that put them at 
risk of these events [28]. However, too much walking 
could also be harmful especially in individuals who 
are not properly conditioned. If new to walking, it is 
essential to start slowly and gradually build up your 
duration and intensity.

Optimizing physical activity: from brisk walking 
to step goals and health benefits

There is irrefutable evidence that adherence to cur-
rent physical activity guideline recommendations [8, 
9, 19] can reduce the risk of chronic diseases such 
as CVD and T2D and contribute to overall health. 
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Brisk walking is an example of a moderate-intensity 
physical activity that counts towards the weekly rec-
ommended physical activity goals. While any type 
of walking can be beneficial, walking at a faster pace 
is associated with better cardiovascular and overall 
health compared to walking at a slow pace. A brisk 
walk of at least 30 min per day for 5 days allows one 
to meet the current physical activity guideline rec-
ommendations of at least 150–300 min of moderate-
intensity aerobic physical activity per week [8, 9, 19]. 
Emerging data from prospective studies suggest that 
the cardiovascular and mortality benefits of physical 
activity can be achieved through both concentrated 
and spread-out patterns of activity [305]. The so-
called weekend warrior pattern, with physical activity 
concentrated in 1 or 2 sessions per week, may be suit-
able for individuals with busy lifestyles who cannot 
meet the recommended physical activity levels. How-
ever, it should be noted that some beneficial effects 
of physical activity, such as reductions in blood pres-
sure and lipids, are acute and need to be sustained by 
chronic regular physical activity [306, 307]. Addi-
tionally, the weekend warrior pattern may be more 
likely to be associated with musculoskeletal injuries 
and may not be suitable for people with comorbidities 
or musculoskeletal disorders.

It has been proposed that physical activity recom-
mendations should be translated into step- or pedome-
ter-based guidelines, as this could increase the clinical 
and public health impact of physical activity promo-
tion [69, 76, 308]. A recent review of objectively 
measured physical activity types with clinical out-
comes demonstrated that step count was the strongest 
and most consistently associated with a wide range of 
clinical outcomes [309]. In a study that sought to con-
vert physical activity recommendations into a pedom-
eter-based step goal, moderate-intensity walking was 
estimated to be approximately equal to at least 100 
steps/min [308]. To achieve physical activity recom-
mendations of at least 150 min per week of moder-
ate-intensity physical activity, individuals needed to 
achieve the goal of walking a minimum of 3000 steps 
in 30 min for 5 days per week [308]. A goal of 10,000 
steps per day has been widely promoted for decades 
as being the number associated with optimal health 
benefits [89, 310]. Recent evidence suggests that aim-
ing for 8000 to 10,000 steps per day can substantially 
reduce the risk of CVD, diabetes, dementia, and pre-
mature death, and this goal is more attainable than the 

widely promoted reference of 10,000 steps per day 
[24, 69, 76, 86, 89]. Research suggests that the rela-
tionship between step count and health outcomes fol-
lows a curvilinear pattern, indicating that the benefits 
associated with increasing step count may be more 
pronounced for individuals with lower step volumes 
[76]. As step count increases, the protective effects on 
health outcomes tend to attenuate [76]. However, it 
is important to note that these recommendations may 
differ for aging adults. Specifically, a study has shown 
that even a modest increase in step count can have 
a significant impact on all-cause mortality in older 
adults aged 60 or more. In this study, it was found that 
taking as few as 6000 steps per day was associated 
with a reduction in mortality risk [24]. This high-
lights the importance of encouraging regular physical 
activity, such as walking, among aging individuals to 
improve their overall health and longevity. Another 
aspect to consider in relation to step count is cadence, 
which refers to the number of steps taken per minute. 
A study conducted in elderly patients found that those 
with a cadence of 100 steps or more per minute had 
a 21% lower risk of all-cause mortality compared to 
individuals with slower cadences [311]. Furthermore, 
for each ten-step increase in cadence, there was an 
additional 4% reduction in mortality risk. This sug-
gests that not only the overall step count but also the 
pace or cadence at which one walks may have impli-
cations for health outcomes, particularly in older 
adults. These findings highlight the importance of 
considering both step count and cadence in promot-
ing physical activity among individuals of different 
age groups. Encouraging individuals to increase their 
step count, especially those with lower step volumes, 
can have significant health benefits. Additionally, 
emphasizing the importance of maintaining a brisk 
walking pace or higher cadence may further enhance 
the positive impact on health outcomes, particularly 
in the older adult population.

Although the dose-response relationships between 
walking and cardiovascular risk factors have not been 
well quantified, pooled analysis of RCTs that have 
evaluated walking interventions for a minimum of 4 
weeks has reported clinically important reductions 
in SBP and DBP of approximately 4–5 and 2 mmHg, 
respectively [25, 29, 32]. These blood pressure reduc-
tion effects are more pronounced in adults with high 
baseline blood pressure [49]. A 2-mmHg reduc-
tion in SBP could reduce mortality from stroke and 
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vascular causes by 10% and 7%, respectively [312]; 
SBP reductions of 5–7 mmHg among individuals 
with hypertension translate to a 20–30% reduced 
risk of CVD [313], and a 2-mmHg reduction in DBP 
could reduce the risk of CHD by 6% and stroke and 
TIAs by 15% [314].

Additionally, walking has been demonstrated to 
increase levels of CRF [16–18], a strong predictor 
of adverse cardiovascular outcomes [315, 316], and 
middle-aged individuals who meet current recom-
mendations for moderate-intensity physical activity 
(such as walking) are more likely to achieve at least 
moderate levels of CRF [317, 318].

Conclusion and perspectives

In conclusion, the evidence overwhelmingly sup-
ports walking as a powerful anti-aging intervention 
that can reduce the risk of chronic age-related dis-
eases such as CVD, hypertension, T2D, and cancer. 
Walking also improves pain and function in musculo-
skeletal disorders, promotes sleep and mental health 
and increases resilience. A brisk walk for at least 30 
min, 5 days a week, is recommended to meet physical 
activity guidelines. Emerging data suggest that both 
concentrated and spread-out physical activity patterns 
can provide similar cardiovascular and mortality ben-
efits. Step count is a strong and consistent predictor 
of clinical outcomes, and aiming for 8000 to 10,000 
steps per day could substantially reduce the risk of 
a range of age-related diseases. Although some ben-
efits of physical activity are acute, sustained and reg-
ular physical activity is necessary to maintain these 
effects. Overall, walking is a simple and effective 
intervention that can be easily integrated into daily 
routines to promote healthy aging and prevent chronic 
age-related diseases. Although it is not as high inten-
sity as other physical activity types such as running, 
its health benefits are substantial and are irrespective 
of age, sex, race, or geographical location. Incorpo-
rating regular walking into daily routines should be 
encouraged as a key strategy for healthy aging and 
disease prevention.

Despite established physical activity guidelines 
and targets in most countries, and the World Health 
Organization’s recommendation that all nations 
implement policies to facilitate physical activity 
regardless of age or disability, global participation in 

physical activity has not improved over the last two 
decades. Recent estimates indicate that one in four 
adults do not meet aerobic exercise recommendations 
[319].

Walking-based interventions have the potential to 
improve health outcomes and promote healthy aging 
in a variety of populations, including employees at 
sedentary jobs at the workplace, older adults, individ-
uals with chronic conditions, and those at risk for age-
related diseases. One key advantage of walking-based 
interventions is their accessibility and affordability. 
Walking requires no special equipment or facilities 
and can be done at any time of day, making it an ideal 
form of physical activity for people of all ages and 
abilities. Furthermore, walking can be incorporated 
into daily routines, such as commuting to work, run-
ning errands, or taking leisurely strolls, making it an 
easy and convenient way to increase physical activity 
levels. Walking-based interventions have been shown 
to be effective in a variety of settings, including work-
place health promotion programs [320], community-
based programs [321], and clinical settings [322]. In 
particular, workplace walking interventions have been 
associated with improved productivity [323], reduced 
absenteeism [324], increased organizational com-
mitment [320], improved job motivation [320], and 
lowered healthcare costs [325], while clinical walk-
ing interventions have been shown to improve func-
tional status [326], reduce falls [327], and enhance 
quality of life [326, 328] in individuals with chronic 
conditions.

Substantial inequalities in physical activity partici-
pation persist across demographic factors such as age, 
sex, disability, socioeconomic status, and geographic 
location [329, 330]. These data underscore the urgent 
need for tailored walking-based interventions that 
effectively address the root causes of these dispari-
ties to maximize the potential of physical activity to 
improve health outcomes.

There is an urgent need to invest in services and 
interventions that promote walking across all popula-
tions. Promising target populations include sedentary, 
less active, and obese individuals who are unable to 
engage in vigorous-intensity physical activity, those 
who do not have access to exercise facilities, and indi-
viduals who are just not aware of the health benefits 
of walking. Interventions, supports, and programs 
that have been documented to promote and increase 
walking include outdoor walking groups [28], 
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community-based walking programs, use of pedom-
eters [331], computer- or mobile phone-based inter-
ventions [332, 333], transportation walking [334], 
and school and workplace initiatives [332]. Physi-
cians specialized in preventive medicine, lifestyle 
medicine, or longevity medicine and health profes-
sionals have a key role to play in prescribing walk-
ing to their patients, especially those individuals who 
are unable to engage in vigorous-intensity physical 
activities.

To advance the field of geroscience, preventive 
medicine, and public health, future research should 
prioritize several areas of inquiry. First, research 
should quantify the frequency, duration, intensity, and 
volume of walking required to improve risk factors 
for CVD and other age-related diseases. Second, there 
should be a focus on describing the dose-response 
relationships between walking and various health 
outcomes, including the identification of thresholds 
for optimal benefit. Third, it is important to identify 
and evaluate other strategies for promoting and sus-
taining participation in walking over the long term. 
Finally, physical activity guideline recommendations 
based on step-counts for various populations, includ-
ing different occupational groups, need to be devel-
oped. Such research will provide valuable insights 
into the role of walking as an effective intervention 
for promoting healthy aging and preventing chronic 
age-associated diseases. Studies investigating the 
age-specific effects of exercise and walking on health 
outcomes are also warranted [335]. As older adults 
experience age-related declines in immune function, 
they are at increased risk of severe illness and death 
from infectious diseases. As the COVID-19 pandemic 
swept the globe, older adults were identified as a par-
ticularly vulnerable population due to their increased 
risk for severe illness and death from the SARS-
CoV-2 virus [179, 180, 336–348]. As a result, there 
has been growing interest in developing interventions 
to boost the immune function of older adults and 
improve their overall health and resilience [349, 350]. 
Walking-based interventions and exercise programs 
have been identified as a promising approach for con-
tributing to these goals [351–355]. Future research 
should continue to explore the potential of walking as 
a low-cost and accessible intervention for improving 
immune function and other health outcomes in older 
adults. Comprehensive healthy aging programs con-
taining walking-based interventions are important for 

improving societal resilience to future pandemics and 
promoting healthy aging for all.
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